EARTH ARCHITECTURE

TRADITION
1. France
2. France
3. Portugal
4. Spain
5. France
6. Italy

MODERNITY
7-8. France
9-11. France
12. Germany
13. Germany

EARTH ARCHITECTURE / tradition and modernity / page 1 / A4 size
1 ARABIE SAOUDITE
2 IRAN
3-4 NEPAL
8 YEMEN
7 TURKMENISTAN

5-6 INDIA
11 AUSTRALIA
10 SAUDI ARABIA
9 KOREA
13 AUSTRALIA
12 INDIA
1 CUBA
2 PERU
3-4 USA
5 MEXICO
6 USA
7 FRENCH GUIANA
8 USA
9 EL SALVADOR
10-11 PERU
12 BRAZIL
13 BOLIVIA
WEALTH AND MODERNITY AROUND THE WORLD

africa

1. UGANDA
2. MAYOTTE (France)
3. BURKINA FASO
4. NIGERIA
5. SOUTH AFRICA
6. MOROCCO
7. BURKINA FASO
8. MALI
9. SOUTH AFRICA
10. CAMEROON
11. MADAGASCAR
12. MOROCCO
13. GHANA

EARTH ARCHITECTURE /tradition and modernity/page 4/A4 size
Before constructing, it is necessary to think well about the choice of the site and the orientation of the building.

The durability of a building first of all depends on the context in which it is constructed. It is necessary to consider several factors before the construction, such as the nature of soil, the climate (rain, wind, sun...), the topography of the site, etc.

The orientation of the building must guarantee good protection against rains, winds, direct solar exposition.

Provision should be made for the whole building periphery in order to drain the stream waters far from the foundations and to avoid water concentrations which could further cause erosion.

Take special care on the site, avoid hollowed grounds, termites, roots...
The foundations permit equal distribution of the weight of walls and roof into the ground. They should be strong, resistant to compression, and should ensure total wall stability. To achieve this function, they should be constructed on hard and good soil, in resistant, durable and quality materials.

The role of the base wall is to protect the rest of the wall from any contact with water. The material used for base walls should be strong enough to resist the total weight of the building, and should also be resistant or protected against moisture penetration. Materials mostly used for base walls include mass earth, stones, burnt brick, cement blocks, landcrete blocks.

Water stagnation at the base of a building will always entail technical problems. If the soil resistance is week, the foundation will have to be wider. The foundation should prevent moisture penetration into the building. Drainage of the site will offer good guarantees of durability. To improve this, we may add materials at the wall base and a capillary barrier at the top of the foundation.

Mass Earth
Landcrete Blocks
Stones
Earth block work permits to construct thin or thick walls, serving as support or partition. It is the way to assemble and link the blocks between them, in all directions (horizontal, vertical, thickness of the wall). Good joining guarantees stability and solidity of the wall.

If the main walls are built out of non-water resistant material, it is recommended that the top layer of these walls will be protected with a layer of water resistant building material.

The openings permit to illuminate and to ventilate the inside of the building. They represent nevertheless a weak point in the structure of the building. It is often from the openings that appear many cracks. Therefore it is necessary to look after their solidity.

The vibrations and shocks resulting from the manipulation of the doors and windows can cause some cracks in the walls. It is therefore necessary to anchor well the joineries in the masonry. In the masonry around the windows, integrate some resistant blocks which will serve later to reinforce the frames anchorages.
The earth constructions must be protected with good roofing, especially in the regions affected by raining seasons. The roofing is like a «hat» for the earth constructions; it must allow the evacuation of rain waters and preserve the building from humidity.

The mud flat roofs are more sensitive to water than the slopping roofs, and need a permanent maintenance, but because of their good thermal insulation, they are well adapted for hot and dry climates.

The sloping roof with a minimum overpass of 30 cm (12") is very efficient to evacuate the rainwater and protect the earth walls. The anchorage of the roofing into the wall is indispensable to reduce the risks of distortion and uprising of the roofing under the pressure of strong winds.

A good plastering should have a good adhesion to the wall without causing any damage to it, should be flexible enough to absorb possible distortions of the wall without cracking, should be water resistant to some extend but also permeable enough to let water and steam go out from the wall, and finally should have good appearance compatible with the local environment.

The main functions of the plastering are the protection of the wall from rain and shocks, the prolongation of the wall lifetime and the improvement of the appearance of the wall.